var canvas; var ctx; //图片加载完成触发 img.onload = function(){ canvas=document.getElementById("myCanvas"); canvas.width = img.width; canvas.height = img.height; ctx=canvas.getContext("2d"); ctx.drawImage(img,0,0,img.width,img.height); } </script>
<!-- demo2: 彩色图像灰度化 --> <scripttype="text/javascript"> //彩色图像灰度化 functionProcessToGrayImage(){ //取得图像数据 var imgData=ctx.getImageData(10,10,50,50); var canvasData = ctx.getImageData(0, 0, canvas.width, canvas.height); //这个循环是取得图像的每一个点,在计算灰度后将灰度设置给原图像 for (var x = 0; x < canvasData.width; x++) { //alert("x="+x); for (var y = 0; y < canvasData.height; y++) { //alert("y="+y); // Index of the pixel in the array var idx = (x + y * canvas.width) * 4;
// The RGB values var r = canvasData.data[idx + 0]; var g = canvasData.data[idx + 1]; var b = canvasData.data[idx + 2]; //更新图像数据 var gray = CalculateGrayValue(r , g , b); canvasData.data[idx + 0] = gray; canvasData.data[idx + 1] = gray; canvasData.data[idx + 2] = gray; } } ctx.putImageData(canvasData, 0, 0); } //计算图像的灰度值,公式为:Gray = R*0.299 + G*0.587 + B*0.114 functionCalculateGrayValue(rValue,gValue,bValue){ returnparseInt(rValue * 0.299 + gValue * 0.587 + bValue * 0.114); } </script>
<!-- demo3: 二值化--> <scripttype="text/javascript"> //一维OTSU图像处理算法 functionOTSUAlgorithm(){ var m_pFstdHistogram = newArray();//表示灰度值的分布点概率 var m_pFGrayAccu = newArray();//其中每一个值等于m_pFstdHistogram中从0到当前下标值的和 var m_pFGrayAve = newArray();//其中每一值等于m_pFstdHistogram中从0到当前指定下标值*对应的下标之和 var m_pAverage=0;//值为m_pFstdHistogram【256】中每一点的分布概率*当前下标之和 var m_pHistogram = newArray();//灰度直方图 var i,j; var temp=0,fMax=0;//定义一个临时变量和一个最大类间方差的值 var nThresh = 0;//最优阀值 //获取灰度图像的信息 var imageInfo = GetGrayImageInfo(); if(imageInfo == null){ window.alert("图像还没有转化为灰度图像!"); return; } //初始化各项参数 for(i=0; i<256; i++){ m_pFstdHistogram[i] = 0; m_pFGrayAccu[i] = 0; m_pFGrayAve[i] = 0; m_pHistogram[i] = 0; } //获取图像信息 var canvasData = imageInfo[0]; //获取图像的像素 var pixels = canvasData.data; //下面统计图像的灰度分布信息 for(i=0; i<pixels.length;i+=4){ //获取r的像素值,因为灰度图像,r=g=b,所以取第一个即可 var r = pixels[i]; m_pHistogram[r]++; } //下面计算每一个灰度点在图像中出现的概率 var size = canvasData.width * canvasData.height; for(i=0; i<256; i++){ m_pFstdHistogram[i] = m_pHistogram[i] / size; } //下面开始计算m_pFGrayAccu和m_pFGrayAve和m_pAverage的值 for(i=0; i<256; i++){ for(j=0; j<=i; j++){ //计算m_pFGaryAccu[256] m_pFGrayAccu[i] += m_pFstdHistogram[j]; //计算m_pFGrayAve[256] m_pFGrayAve[i] += j * m_pFstdHistogram[j]; } //计算平均值 m_pAverage += i * m_pFstdHistogram[i]; } //下面开始就算OSTU的值,从0-255个值中分别计算ostu并寻找出最大值作为分割阀值 for (i = 0 ; i < 256 ; i++){ temp = (m_pAverage * m_pFGrayAccu[i] - m_pFGrayAve[i]) * (m_pAverage * m_pFGrayAccu[i] - m_pFGrayAve[i]) / (m_pFGrayAccu[i] * (1 - m_pFGrayAccu[i])); if (temp > fMax) { fMax = temp; nThresh = i; } } //下面执行二值化过程 for(i=0; i<canvasData.width; i++){ for(j=0; j<canvasData.height; j++){ //取得每一点的位置 var ids = (i + j*canvasData.width)*4; //取得像素的R分量的值 var r = canvasData.data[ids]; //与阀值进行比较,如果小于阀值,那么将改点置为0,否则置为255 var gray = r>nThresh?255:0; canvasData.data[ids+0] = gray; canvasData.data[ids+1] = gray; canvasData.data[ids+2] = gray; } } //显示二值化图像 var newImage = document.getElementById('myCanvas').getContext('2d'); newImage.putImageData(canvasData,0,0); } //获取图像的灰度图像的信息 functionGetGrayImageInfo(){ var canvas = document.getElementById('myCanvas'); var ctx = canvas.getContext('2d'); var canvasData = ctx.getImageData(0, 0, canvas.width, canvas.height); if(canvasData.data.length==0){ returnnull; } return [canvasData,ctx]; } //下面对灰度图像进行处理,将目标信息分割出来 functionDividedTarget(){ //读取二值化图像信息 var imageInfo = document.getElementById('myCanvasThreshold'); if(imageInfo == null){ window.alert("没有发现二值化图像信息!"); return; } //取得上下文 var ctx = imageInfo.getContext('2d'); //获取图像数据 var canvasData = imageInfo.getImageData(0, 0, ctx.width, ctx.height); var newVanvasData = canvasData; //取得图像的宽和高 var width = canvasData.width; var height = canvasData.height; //算法开始 var cursor = 2; for(var x=0; x<width; x++){ for(var y=0; y<height; y++){ //取得每一点的位置 var ids = (x + y*canvasData.width)*4; //取得像素的R分量的值 var r = canvasData.data[ids]; //如果是目标点 if(r==0){ } } } } </script>